Wastewater Treatment Fundamentals I

Chapter Summary and Time Allotments

Chapter Title	Learning Objectives	Average completion
Chapter 1	Understand the need for wastewater treatment.	time 3 Hours
Introduction to		5 110015
Wastewater Treatment	Identify major unit processes of domestic WRRFs.	
	Understand the linkages between the liquid stream and	
	solids handling sides of a WRRF.	
	Label appropriately.	
	• Draw an example WRRF, clearly label the main unit	
	processes, and give the function of each.	
	Draw a typical natural treatment system and a typical	
	mechanical treatment system.	
	Describe the permitting requirements of the Clean	
	Water Act (CWA) and the biosolids 503 regulations.	
Chapter 2	• List the significant sources of wastewater for a domestic	3 hours
Characterization and	WRRF.	
Sampling of Wastewater	• Evaluate the effect of activities in the service area on	
	flow patterns at the WRRF.	
	• Explain how the size of the collection system and	
	population served affect diurnal flow patterns.	
	List and define additional components of domestic	
	wastewater.	
	• Estimate flows and loads to a WRRF from population	
	data. Calculate per capita generation rates.	
	 Convert nitrogen and phosphorus compounds to 	
	expressions as N and P, respectively.	
Chapter 3	 Describe the purpose of trash racks, bar screens, 	5 hours
Preliminary Treatment of	comminutors and grinders, and grit basins;	
Wastewater	 Compare and contrast different screen types; 	
	 Select a screen category given downstream equipment 	
	requirements;	
	 Place a screen or grit basin into service or remove one 	
	out of service;	
	Compare and contrast different types of grit basins; Calculate flow values types on an an abarral or full pines.	
	Calculate flow velocity for an open channel or full pipe;	
	Determine the optimum number of grit basins to place into convict to maintain a desired	
	into service to maintain a desired	
	flow velocity;	
	Troubleshoot common screening and grit removal	
	process control and mechanical	
	• problems; and	
	Describe potential effects of septage receiving on facility	
	operations.	
Chapter 4	Describe the purpose of primary clarification;	6 hours
Primary Treatment of	Categorize influent parameters according to whether	
Wastewater	they can be removed by primary clarification;	

	Label all components of circular and rectangular primary	
	clarifiers and describe the function of each;	
	 Inspect and maintain clarifier equipment; 	
	 Place a primary clarifier into service or remove one from 	
	service;	
	Calculate hydraulic detention time and surface overflow	
	rate;	
	• Determine the optimum number of clarifiers to place	
	into service to maintain a desired surface overflow rate	
	and detention time;	
	• Estimate the quantity of sludge produced given primary	
	influent and effluent TSS concentrations;	
	Calculate sludge pumping time required for a given	
	sludge thickness and volume;	
	Collect process control samples, conduct settleable	
	solids analysis, and evaluate results;	
	Anticipate seasonal changes and make appropriate	
	process control changes; and	
	Troubleshoot common mechanical and process control	
	problems.	
Chapter 5	Describe how dissolved and particulate organic matter	4 hours
Fundamentals of	are removed by biological treatment processes;	
Biological Treatment	Predict the fate of dissolved organic material based on	
	its characteristics;	
	• Categorize the main groups of microorganisms and their	
	functions in secondary treatment processes;	
	Compare and contrast carbon and energy sources for	
	heterotrophic and autotrophic bacteria;	
	Compare growth rates of heterotrophic and autotrophic heterotrophic and autotrophic	
	 bacteria; Define and explain the purpose of aerobic, anoxic, and 	
	 Define and explain the purpose of aerobic, anoxic, and anaerobic conditions in biological treatment processes; 	
	 Predict the behavior of heterotrophic bacteria, nitrifying 	
	autotrophic bacteria, and phosphate accumulating	
	bacteria under aerobic, anoxic, and anaerobic	
	conditions;	
	 Understand the terms yield, decay, maximum growth 	
	rate, half-saturation coefficient, and substrate;	
	 Compare bacterial growth rates at different wastewater 	
	temperatures and explain how growth rates affect	
	treatment process capacity; and	
	• Explain the effect of substrate concentrations on	
	bacterial growth rates.	
Chapter 6	• List and describe the three types of wastewater ponds;	4 hours
Wastewater Treatment	• Describe the interrelationships between bacteria, algae,	
Ponds	and predator organisms;	
	• Explain the three mechanisms for nitrogen removal in	
	ponds;	
	• Evaluate the effects of water temperature, sunlight,	
	nutrient availability, and other operational parameters	
	on population dynamics;	
	Discuss the causes of fall and spring turnover in	
	facultative ponds;	

	Inspect and maintain pond components;	
	Determine when to use series versus parallel operation;	
	 Calculate hydraulic detention time and organic loading rate; 	
	 Place a pond into service or remove a pond from service; 	
	 Collect process control samples and evaluate results; 	
	and	
	Troubleshoot common process control problems.	
Chapter 7	Understand biofilm growth and decay;	5 hours
Fixed-Film Treatment	• Explain the principles underlying mass transport through a biofilm;	
	• Label all components of trickling filters and RBCs and describe the function of each;	
	• Determine the direction of airflow through a trickling filter;	
	 Place a trickling filter or RBC into service or remove one from service; 	
	 Inspect and maintain trickling filter and RBC equipment; Calculate organic and hydraulic loading rates (HLRs) for trickling filters and RBCs; 	
	• Make process adjustments to maintain a desired biofilm thickness or weight in trickling filters and RBCs;	
	• Determine the recycle ratio required to maintain a	
	desired Spülkraft (SK) value for a trickling filter;	
	 Interpret influent biochemical oxygen demand (BOD) data and adjust the size of stage 1 treatment for an RBC in response; 	
	 Collect process control samples and evaluate results; 	
	• Implement corrective actions to minimize the effects of	
	 biofilm predators; and Troubleshoot common mechanical and process control 	
Chantan 0	problems.	12 h a
Chapter 8 Activated Sludge	• Describe the components of an activated sludge process and the functions of each.	12 hours
	 Describe the relationship between activated sludge microbiology and sludge settleability. 	
	• Explain the importance of balancing the growth of floc formers and filament formers.	
	Identify microorganisms common to activated sludge	
	processes including filamentous bacteria, protozoa,	
	metazoa.	
	 List at least three groups of microorganisms present in activated sludge and describe the conditions that 	
	promote their growth.Evaluate information on types of microorganisms	
	 Evaluate information on types of microorganisms present to determine underlying operating conditions. 	
	 Compare and contrast complete-mix, plug-flow, and 	
	batch operation.	
	 Inspect and maintain equipment associated with the 	
	activated sludge process.	
	• Compare and contrast gould sludge age, mean cell residence time (MCRT), solids retention time (SRT), and	
	solids retention time aerobic (SRT _{aerobic}).	

		1
	• Calculate process control variables, including MCRT, SRT,	
	SRT _{aerobic} , and food-to-microorganism ratio (F/M).	
	• Determine whether MCRT, SRT, or SRT _{aerobic} is the most	
	appropriate control variable given facility data.	
	 Select a target sludge age to meet treatment objectives 	
	at a particular water temperature.	
	Calculate theoretical maximum return activated	
	sludge/waste activated sludge (RAS/WAS)	
	concentrations from settleometer test results.	
	Calculate actual RAS/WAS concentrations using influent	
	flow and RAS flow. Compare against theoretical	
	maximum thickness to optimize RAS flowrate.	
	Predict the effect of increasing or decreasing sludge age	
	on other process control variables including mixed liquor	
	suspended solids (MLSS) concentration, mixed liquor	
	volatile suspended solids (MLVSS) concentration, F/M,	
	and wasting rate.	
	 Select a target dissolved oxygen (DO) concentration to prevent filamentous bulking and/or maximize ammonia 	
	removal rates.	
	 Describe how hydraulic and solids loading parameters 	
	are calculated for secondary clarifiers and the relative	
	importance of each.	
	• Explain how the maximum solids loading rate to a	
	secondary clarifier depends on sludge settling	
	characteristics.	
	 Collect process control samples, conduct testing, and 	
	evaluate results.	
	 Start up a new activated sludge process, place a basin 	
	into service, or take one out of service.	
	Troubleshoot common activated sludge and secondary	
	clarifier process control and mechanical problems.	
	Discuss differences between different types of activated	
	sludge processes (complete mix, step feed, oxidation	
	ditch, pureox, etc.). Understand that they are all based	
Chantar 0	on the same underlying biological principles	8 hours
Chapter 9 Nutrient Removal	 Predict the fate of different nitrogen and phosphorus species during biological and chemical treatment. 	8 110015
Nuthent Keniovai	 Interpret chemical equations, predict the composition of 	
	ionic compounds, convert moles to milligrams per liter	
	(mg/L), and calculate chemical dosages from balanced	
	chemical equations.	
	• Explain the steps involved in nitrification, denitrification,	
	and enhanced biological phosphorus removal (EBPR) and	
	identify the microorganisms responsible for each	
	transformation.	
	• List the stoichiometric requirements for and products of	
	nitrification, denitrification, EBPR, and chemical	
	phosphorus removal.	
	Identify the most important process control parameters	
	for nitrification, denitrification, chemical phosphorus	
	removal, and EBPR.	
	 Describe the effects of environmental variables (pH, discolved environ 	
	dissolved oxygen [DO], etc.) on each biological process.	

		1
	 Evaluate process control data to determine whether nitrification, denitrification, or EBPR will be inhibited. Demonstrate how to manipulate process variables to maximize nitrification and denitrification rates. Determine best time of day and flowrate for adding recycle stream flows from solids-handling processes to minimize effluent nitrogen and phosphorus concentrations. Calculate alkalinity requirements for nitrification and chemical phosphorus removal. Calculate stoichiometric doses of metal salts required for phosphorus removal and estimate actual dose based on treatment objectives. Select a metal salt and addition point based on treatment objectives 	
Chapter 10 Disinfection	 Compare and contrast the goal of disinfection versus sterilization; Explain the concept of indicator organisms and list six characteristics that make an ideal indicator organism; Compare and contrast testing methodologies for indicator organisms; Discuss the effect of temperature and pH on chlorine chemistry; Predict the effect of various chemical components, for example, nitrite and ammonia, on chlorine residual; Understand the difference between combined, free, and total chlorine residual (TCR); Explain why understanding the breakpoint curve is important for facilities that nitrify; Manipulate contact time (CT) or residual to achieve a desired level of inactivation of indicator organisms; Adjust chlorine dose to meet discharge permit limits for indicator organisms; Label all components of different types of disinfection equipment and describe the functions of each; Inspect, operate, and maintain chlorination, dechlorination, and UV disinfection equipment; Place disinfection equipment into service and remove it from service safely; Calculate chemical feed rate, dose, or flow given two of the three variables; Determine required chemical feed pump settings in milliliters per minute (mL/min); Discuss the mechanism behind UV inactivation of genetic material; Explain how effluent quality can affect UV disinfection efficiency; and Troubleshoot common mechanical and process control 	8 hours
Final Exam	 problems. Randomized 100 question final exam cover questions from each chapter. Must achieve a passing score of 80%. 	4 hours